Interior Point Methods Applied to Basis Pursuit

Paula Aparecida Kikuchi (IMECC – Unicamp)

Prof. Daniela Renata Cantane (Unesp – Botucatu) Prof. Aurelio Ribeiro Leite de Oliveira (IMECC – Unicamp)

1st Brazilian Workshop on Interior Point Methods

April 27th, 2015 Campinas

Outline

- 2 Basis Pursuit
- Operation of the second sec

Implementation

Motivation

Basis Pursuit Primal-Dual Logarithmic Barrier Method Applied to BP Implementation Computational Tests

Motivation

Motivation

Basis Pursuit Primal-Dual Logarithmic Barrier Method Applied to BP Implementation Computational Tests

Motivation

Motivation

Given the signal $x \in \mathbb{R}^N$ and a orthonormal bases $\{\psi_i\}_{i=1}^N$, we can express x as:

$$x = \sum_{i=1}^{N} \alpha_i \psi_i \text{ ou } x = \Psi \alpha$$
 (1)

where $\alpha_i = \langle x, \psi_i \rangle$.

Motivation

Definition

(K-sparse Signal) The signal x is K – sparse, if it is linear combination of K vectors of bases in (1).

Motivation

Definition

(K-sparse Signal) The signal x is K – sparse, if it is linear combination of K vectors of bases in (1).

Definition

(Compressible Signal) We say that x is compressible if the representation (1) has just a few large coefficients and many small coefficients.

Motivation

Definition

(K-sparse Signal) The signal x is K – sparse, if it is linear combination of K vectors of bases in (1).

Definition

(Compressible Signal) We say that x is compressible if the representation (1) has just a few large coefficients and many small coefficients.

Compressible signals are well approximated by K - sparse representations

Transform Coding

• Get the signal x.

Transform Coding

• Solve
$$\alpha = \Psi^T x$$

Transform Coding

• Get the signal x.

• Solve
$$\alpha = \Psi^T x$$
.

• The *K* largest coefficients are located and the *N* - *k* smallest coefficients are discarded.

Inefficiencies

• The initial number of samples may be large.

Inefficiencies

• The initial number of samples may be large.

• The set of all *N* transform coefficients must be computed even though *K* of them will be discarded.

Inefficiencies

• The initial number of samples may be large.

- The set of all *N* transform coefficients must be computed even though *K* of them will be discarded.
- The locations of the large coefficients must be encoded, thus introducing an overhead.

Compressive Sensing

• Directly acquiring a compressed signal representation without going through the intermediate stage of acquiring N samples.

Compressive Sensing

• Directly acquiring a compressed signal representation without going through the intermediate stage of acquiring N samples.

Compute M < N inner products between x and a collection of vectors {φ_j}^M_{j=1}, that is, s_j = ⟨x, φ_j⟩

Compressive Sensing

- Directly acquiring a compressed signal representation without going through the intermediate stage of acquiring N samples.
- Compute M < N inner products between x and a collection of vectors {φ_j}^M_{j=1}, that is, s_j = ⟨x, φ_j⟩
- We can write:

$$s = \Phi x = \Phi \Psi \alpha = \Theta \alpha$$

where $\Theta = \Phi \Psi$ is an $M \times N$ matrix.

Compressive Sensing

The problem consists in:

• Get a matrix Φ such that the salient information in any K – sparse or compressible signal is not damaged by the dimensionality reduction.

Compressive Sensing

The problem consists in:

- Get a matrix Φ such that the salient information in any K sparse or compressible signal is not damaged by the dimensionality reduction.
- A reconstruction algorithm to recover x from only M measurements s.

Geometric Motivation

Consider the search for α signal having representation sparser and respects the linear equation that restricts its position in \mathbb{R}^2 on the dotted line.

Basis Pursuit

Our goal is to apply Interior Point Methods to the problem:

$$\begin{array}{ll} \text{minimize} & \|\alpha\|_1\\ \text{subject to} & \Theta\alpha = s \end{array} \tag{2}$$

Purpose

Purpose

On the PhD thesis of Chen, entitled *Basis Pursuit*, he seeks the representation of signals using dictionaries.

Purpose

On the PhD thesis of Chen, entitled *Basis Pursuit*, he seeks the representation of signals using dictionaries.

In search of the sparse representation, applies Basis Pursuit.

Purpose

On the PhD thesis of Chen, entitled *Basis Pursuit*, he seeks the representation of signals using dictionaries.

In search of the sparse representation, applies Basis Pursuit.

To solve the problem *Basis Pursuit*, Chen implements the Primal-Dual Logarithmic Barrier Method.

Purpose

On the PhD thesis of Chen, entitled *Basis Pursuit*, he seeks the representation of signals using dictionaries.

In search of the sparse representation, applies Basis Pursuit.

To solve the problem *Basis Pursuit*, Chen implements the Primal-Dual Logarithmic Barrier Method.

Our goal will be get more efficient results, implementing Interior Point Methods to the problem in question.

Signal Representation

Definition

(Dictionary) A dictionary is a collection of parameterized waveforms $D = (\phi_{\gamma} : \gamma \in \Gamma)$, with waveforms ϕ_{γ} discrete-time signals called atoms, which may also be viewed as a vector in \mathbb{R}^n .

Signal Representation

Definition

(Dictionary) A dictionary is a collection of parameterized waveforms $D = (\phi_{\gamma} : \gamma \in \Gamma)$, with waveforms ϕ_{γ} discrete-time signals called atoms, which may also be viewed as a vector in \mathbb{R}^n .

Dictionaries are defined as complets when they contain exactly n atoms, *overcomplete* when contain more than n atoms, or *undercomplete* when contain fewer than n atoms.

Signal Representation

Definition

(Dictionary) A dictionary is a collection of parameterized waveforms $D = (\phi_{\gamma} : \gamma \in \Gamma)$, with waveforms ϕ_{γ} discrete-time signals called atoms, which may also be viewed as a vector in \mathbb{R}^n .

Dictionaries are defined as complets when they contain exactly n atoms, *overcomplete* when contain more than n atoms, or *undercomplete* when contain fewer than n atoms.

Dictionaries examples: stationary wavelets, wavelet packets, cosine packets, chirples, warplets, Gabor dictionaries, wavelets and steerable wavelets.

Signal Representation

Let s be a discrete-time digital signal or a vector in \mathbb{R}^n , we assume a decomposition of the signal as

$$s = \sum_{\gamma \in \Gamma} \alpha_{\gamma} \phi_{\gamma}. \tag{3}$$

Consider that we have a discrete dictionary with p waveforms and a Φ matrix whose columns correspond to p waveforms ($\Phi : n \times p$), we can rewrite (3) as:

$$\Phi \alpha = s, \tag{4}$$

wherein $\alpha = (\alpha_{\gamma})$ is the vector of coefficients in (3).

Signal Representation

There are several methods proposed to represent signals with *overcomplete* dictionaries. Some examples are:

- Method of Frames.
- Matching Pursuit.
- The Best Orthogonal Basis,
- Basis Pursuit.

Signal Representation

Basis Pursuit

The principle of Basis Pursuit is to find a representation of the signal whose coefficients have minimal norm 1. Formally, one solves the problem:

$$\begin{array}{ll} \text{minimize} & \|\alpha\|_1 \\ \text{subject to} & \Phi\alpha = s \end{array} \tag{5}$$

Basis Pursuit

Although the Basis Pursuit problem (5) involves nonlinear optimization, it can be equivalently reformulated as a linear program in the standard form:

minimize
$$c^T x$$

subject to $Ax = b$, (6)
 $x \ge 0$.

Basis Pursuit

Consider α as:

 $\alpha = u - v$, with *u* and *v* not negatives

and with $\|\alpha\|_1$ upper bound of $e^T u + e^T v$, follows

$$\Phi \alpha = \Phi (u - v)$$

and
 $e^{T}u + e^{T}v = \|\alpha\|_{1}$

Basis Pursuit

We obtain the following equivalent problem:

$$\begin{array}{ll} \text{minimize} & e^T u + e^T v\\ \text{subject to} & \Phi \left(u - v \right) = s,\\ & \left(u, v \right) \geq \mathbf{0}, \end{array}$$

Basis Pursuit

Making the following transformations:

 $m \Leftrightarrow 2p$
Basis Pursuit

Making the following transformations:

 $m \Leftrightarrow 2p$ $x \Leftrightarrow (u; v)$

Basis Pursuit

Making the following transformations:

 $m \Leftrightarrow 2p$ $x \Leftrightarrow (u; v)$ $c \Leftrightarrow (e; e)$

Basis Pursuit

Making the following transformations:

 $m \Leftrightarrow 2p$ $x \Leftrightarrow (u; v)$ $c \Leftrightarrow (e; e)$ $A \Leftrightarrow (\Phi, -\Phi)$

Basis Pursuit

Making the following transformations:

Basis Pursuit

Making the following transformations:

 $m \Leftrightarrow 2p$ $x \Leftrightarrow (u; v)$ $c \Leftrightarrow (e; e)$ $A \Leftrightarrow (\Phi, -\Phi)$ $b \Leftrightarrow s$.

We obtain the linear problem in standard form.

Formulation

We will use the formulation proposed by Gill, Murray and Saunders, rewriting the problem as the following perturbed linear program:

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2$$

subject to $Ax + \delta p = b$, (7)
 $x \ge 0$,

where γ and δ are small (10⁻⁴) perturbation parameters;

Logarithmic Barrier

One can associate the perturbed linear problem (7) with a logarithmic barrier subproblem:

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2 - \mu \sum_{i=1}^m \ln(x_i)$$

subject to $Ax + \delta p = b$.

where the constraint $x \ge 0$ is implicit. As $\mu \to 0$ the solution of the logarithmic barrier problem converges to the solution of the perturbed linear problem.

First Order Necessary Conditions

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2 - \mu \sum_{i=1}^m \ln(x_i) + y^T (b - Ax - \delta p)$$

First Order Necessary Conditions

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2 - \mu \sum_{i=1}^m \ln(x_i) + y^T (b - Ax - \delta p)$$

$$\nabla_{x}L = A^{T}y - \gamma^{2}x - c + z = 0$$

First Order Necessary Conditions

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2 - \mu \sum_{i=1}^m \ln(x_i) + y^T (b - Ax - \delta p)$$

$$\nabla_{x}L = A^{T}y - \gamma^{2}x - c + z = 0$$

$$\nabla_{p}L = \delta y - p = 0 \Rightarrow p = \delta y$$

First Order Necessary Conditions

minimize
$$c^T x + \frac{1}{2} \|\gamma x\|_2^2 + \frac{1}{2} \|p\|_2^2 - \mu \sum_{i=1}^m \ln(x_i) + y^T (b - Ax - \delta p)$$

$$\nabla_{x}L = A^{T}y - \gamma^{2}x - c + z = 0$$

$$\nabla_{p}L = \delta y - p = 0 \Rightarrow p = \delta y$$

$$\nabla_{y}L = Ax + \delta p - b = Ax + \delta^{2}y - b = 0$$

First Order Necessary Conditions

And complementarity condition for the dual variable z we have:

$$ZXe - \mu e = 0$$

Newton's Method

The Newton search directions $(\Delta x, \Delta y, \Delta z)$ satisfy:

$$\left(ADA^{T} + \delta^{2}I\right)\Delta y = r - AD\left(X^{-1}v - t\right)$$
(8)

$$\Delta x = DA^{T} \Delta y + D \left(X^{-1} v - t \right)$$
(9)

$$\Delta z = X^{-1} v - X^{-1} Z \Delta x \tag{10}$$

where $D = (X^{-1}Z + \gamma^2 I)^{-1}$.

Newton's Method

Newton's Method

• The Newton steplength (ρ_p, ρ_d) , should be chosen as large as possible while still maintaining positive of $x^{(k+1)}$ and $z^{(k+1)}$.

Newton's Method

- The Newton steplength (ρ_p, ρ_d) , should be chosen as large as possible while still maintaining positive of $x^{(k+1)}$ and $z^{(k+1)}$.
- Each barrier iteration consists of a Newton step adjustment followed by a decrement in the barrier parameter μ. Decrease μ monotonically and more rapidly if larger steps are taken:

$$\mu \leftarrow (1 - \min\left(\rho_{\mathcal{P}}, \rho_{\mathcal{d}}, \mathbf{0}, \mathbf{99}\right)) \, \mu$$

Newton's Method

- The Newton steplength (ρ_p, ρ_d) , should be chosen as large as possible while still maintaining positive of $x^{(k+1)}$ and $z^{(k+1)}$.
- Each barrier iteration consists of a Newton step adjustment followed by a decrement in the barrier parameter μ. Decrease μ monotonically and more rapidly if larger steps are taken:

$$\mu \leftarrow \left(1 - \min\left(\rho_{\textit{P}}, \rho_{\textit{d}}, \mathbf{0}, \mathbf{99}\right)\right) \mu$$

• The method converges when $||b - Ax - \delta^2 y||_2$, $||c + \gamma^2 x - z - A^T y||_2$ e $z^T x$ are small enough.

BP_Interior

The problem BP_Interior, implemented by Chen and contained in *Atomizer*, solves the problem *Basis Pursuit* using the same procedure described above.

$$\alpha \iff u - v$$

$$x \iff (u; v)$$

$$c \iff (e; e)$$

$$b \iff s$$

$$A \iff (\Phi, -\Phi)$$

$$m \iff 2p$$

Inicialization

Inicialization

• Initializes by the solution from the Method of Frames (MOF), i.e., by a α such $\Phi \alpha = s$ and $\|\alpha\|_2$ is minimal.

Inicialization

٠

• Initializes by the solution from the Method of Frames (MOF), i.e., by a α such $\Phi \alpha = s$ and $\|\alpha\|_2$ is minimal.

$$\mu_0 = 0,01 rac{\|f\|_2}{\sqrt{2n}}$$

where f is the vector whose entries are given by the optimality conditions:

$$\left\| b - Ax - \delta^2 y \right\|_2,$$
$$\left\| c + \gamma^2 x - z - A^T y \right\|_2,$$
$$z^T x.$$

By Conjugate Gradient Methods determine the directions of Newton's Method.

By Conjugate Gradient Methods determine the directions of Newton's Method.

Is projected $dx = x - x_0$ in the null space of Φ by Conjugate Gradient in order to ensure feasibility.

Development of Proposed Methods

Development of Proposed Methods

Development of Proposed Methods

We are motivated by the aim of achieving simultaneously the goals:

• Sparsity: We should obtain the sparsest possible representation of the signal;

Development of Proposed Methods

- Sparsity: We should obtain the sparsest possible representation of the signal;
- Superresolution: We should obtain a resolution of sparse objects that has much higher resolution than that possible with traditional non-adaptive approaches;

Development of Proposed Methods

- Sparsity: We should obtain the sparsest possible representation of the signal;
- Superresolution: We should obtain a resolution of sparse objects that has much higher resolution than that possible with traditional non-adaptive approaches;
- Stability: Small perturbations of signal should not seriously degrade the results;

Development of Proposed Methods

- Sparsity: We should obtain the sparsest possible representation of the signal;
- Superresolution: We should obtain a resolution of sparse objects that has much higher resolution than that possible with traditional non-adaptive approaches;
- Stability: Small perturbations of signal should not seriously degrade the results;
- Speed.

Development of Proposed Methods

Therefore, we modify the Primal-Dual Logarithmic Barrier Method, in the program BP_Interior, to obtain better efficiency. We apply Predictor-Corrector Primal-Dual Logarithmic Barrier Method to problem BP.

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

In this method applies Newton's Method twice.

Aim to improve the performance of BP_Interior, we introduced the concept of three components:

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

In this method applies Newton's Method twice.

Aim to improve the performance of BP_Interior, we introduced the concept of three components:

• Affine Scaling Direction, which corresponds to the step predictor, find given direction when $\mu = 0$.

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

In this method applies Newton's Method twice.

Aim to improve the performance of BP_I interior, we introduced the concept of three components:

- Affine Scaling Direction, which corresponds to the step predictor, find given direction when $\mu = 0$.
- **Centering Direction**, prevents the solutions are close to the edges of the polytope defined by the constraints along the iterations.

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

In this method applies Newton's Method twice.

Aim to improve the performance of BP_I interior, we introduced the concept of three components:

- Affine Scaling Direction, which corresponds to the step predictor, find given direction when $\mu = 0$.
- **Centering Direction**, prevents the solutions are close to the edges of the polytope defined by the constraints along the iterations.
- Nonlinear Correction Direction, calculate the non-linear correction, trying to compensate the linear approximation of Newton's Method.

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Note that the nonlinear term in BP_Interior, corresponds complementarity condition, noting that we define $v = \mu e - Zx$ in BP_Interior. The two steps, corresponding both times we apply Newton's Method can be summarized in:

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Note that the nonlinear term in BP_Interior, corresponds complementarity condition, noting that we define $v = \mu e - Zx$ in BP_Interior. The two steps, corresponding both times we apply Newton's Method can be summarized in:

• In the first step we consider v such that v = -Zx,

Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Note that the nonlinear term in BP_Interior, corresponds complementarity condition, noting that we define $v = \mu e - Zx$ in BP_Interior. The two steps, corresponding both times we apply Newton's Method can be summarized in:

- In the first step we consider v such that v = -Zx,
- In the second step $v = \mu e Zx \Delta Z \Delta Xe$, where $\Delta z \in \Delta x$ were obtained in the first step

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

We propose a variation of Predictor-Corrector Primal-Dual Logarithmic Barrier Method, where we did not perform the replacement in the optimality conditions, so the expressions of the first order conditions are:

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

We propose a variation of Predictor-Corrector Primal-Dual Logarithmic Barrier Method, where we did not perform the replacement in the optimality conditions, so the expressions of the first order conditions are:

$$F(x, y, z, p) = \begin{pmatrix} A^T y - \gamma^2 x - c + z \\ \delta y - p \\ Ax + \delta p - b \\ ZXe - \mu e \end{pmatrix} = \mathbf{0},$$

where z is a dual vector, X and Z are the diagonal matrices formed by the elements of the vectors x and z, respectively.

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

The Newton search directions satisfy:

with

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

The Newton search directions satisfy:

$$(ADA^{T} + \delta^{2}I) \Delta y = r - AD (X^{-1}w - t) + \delta r,$$

$$\Delta x = DA^{T}\Delta y + D (X^{-1}v - t),$$

$$\Delta z = X^{-1}v - X^{-1}Z\Delta x,$$

$$\Delta p = \delta \Delta y - r,$$

$$D = (X^{-1}Z + \gamma^{2}I)^{-1}.$$

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Adding affine scaling direction , centering direction, and the correction direction given by the Predictor-Corrector, let us consider in the first step:

• w = -Zx

and in the second step:

• $w = \mu - Zx - \Delta Z \Delta Xe$.

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

• The method is initialized by the solution of Method of Frames (MOF), so our starting p will be given by: $p = \frac{(b - Ax)}{s}$.

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

- The method is initialized by the solution of Method of Frames (MOF), so our starting *p* will be given by: $p = \frac{(b Ax)}{x}$.
- To choose the step length (ρ_p, ρ_d), we will do just as determined to Predictor-Corrector Primal-Dual Logarithmic Barrier Method, where we always choose the largest possible, provided that the point x^(k+1) and z^(k+1) are interior points.

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

 Every Newton step we grow barrier parameter μ monotonically and faster if large steps are taken:

$$\mu \leftarrow (1 - \min(\rho_p, \rho_d, 0, 99)) \mu.$$

Variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method

 Every Newton step we grow barrier parameter μ monotonically and faster if large steps are taken:

$$\mu \leftarrow (1 - \min(\rho_{p}, \rho_{d}, 0, 99)) \mu.$$

• The method converges when $||b - Ax - \delta p||_2$, $||c + \gamma^2 x - z - A^T y||_2$, $||p - \delta y||_2$ e $z^T x$ are small enough to achieve a numerical precision.

Computational Tests

Computational Tests

The following are the results for signs:

- TwinSine-1,
- WernerSorrows,
- Carbon,
- TwinSine-2,
- FM-Cosine,
- Gong,
- Dynamic-0,
- Dynamic-2 and
- MultiGong.

Computational Tests

Computational Tests

For this representation we apply the BP_Interior Method of Chen, and our modifying methods of BP_Interior:

- Predictor-Corrector Primal-Dual Logarithmic Barrier Method -BP_InteriorPC,
- and our variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method - BP_InteriorPC1.

Computational Tests

For this representation we apply the BP_Interior Method of Chen, and our modifying methods of BP_Interior:

- Predictor-Corrector Primal-Dual Logarithmic Barrier Method -BP_InteriorPC,
- and our variant of Predictor-Corrector Primal-Dual Logarithmic Barrier Method - BP_InteriorPC1.

The numerical experiments were implemented in Matlab R2010a, operating system Ubuntu 11.04, processor Intel $^{\textcircled{R}}$ core i7 2600, 3.4 Ghz, 4 GB memory DDR3, RAM clock 1333Mhz.

Problem Data

Signal	Size of	Dictionary	par1	par2	par3
	Problem				
TwinSine-1	256	DCT	4	0	0
WernerSorrows	1024	СР	6	seno	0
Carbon	1024	WP	10	qmf	0
TwinSine-2	256	DCT	4	0	0
FM-Cosine	1024	СР	6	seno	0
Gong	1024	СР	10	seno	0
Dynamic-0	256	DCT and DIRAC	MekeList(4,0)	0	0
Dynamic-2	256	DCT and DIRAC	MekeList(4,0)	0	0
MultiGong	256	MDC	8	1	0

Computational results for the objective function and processing time

	BP _Interior		
Signal	OF	Time	
TwinSine-1	2,00933e+00	0,1	
WernerSorrows	5,07482e+02	249,2	
Carbon	6,00247e+00	19,8	
TwinSine-2	2,01150e+00	0,1	
FM-Cosine	2,52872e+02	237,3	
Gong	4,73171e+00	1924,5	
Dynamic-0	6,01964e+00	0,3	
Dynamic-2	4,03672e+02	0,4	
MultiGong	2,43810e+01	5,6	

where OF corresponds to the value of the objective function.

Computational results for the objective function and processing time

	BP_Interic	orPC	BP_InteriorPC1		
Signal	OF	Time	OF	Time	
TwinSine-1	2,00934e+00	0,1	2,00934e+00	0,1	
WernerSorrows	5,07587e+02	130,0	5,07576e+02	124,1	
Carbon	6,00003e+00	19,6	6,00003e+00	20,2	
TwinSine-2	2,01108e+00	0,1	2,01108e+00	0,1	
FM-Cosine	2,52885e+02	210,9	2,52896e+02	208,5	
Gong	4,73088e+00	3501,3	4,72132e+00	11587,9	
Dynamic-0	6,01902e+00	0,4	6,01907e+00	0,5	
Dynamic-2	4,02187e+02	0,7	4,02187e+02	0,7	
MultiGong	2,44009e+01	7,2	2,43895e+01	7,3	

where OF corresponds to the value of the objective function.

 BP_Interior, BP_InteriorPC and BP_InteriorPC1 have equivalent computational performance relative to the value of the objective function.

Tests

The convergence time for BP_Interior, BP_InteriorPC and BP_InteriorPC1 were similar, with the most significant differences obtained for:

• The signal *WernerSorrows*, where BP_Interior get 249, 2 seconds for the convergence, BP_InteriorPC, 130, 0 seconds and BP_InteriorPC1, 124, 1 seconds;

and signal *Gong*, we get very different times for the three methods,
 BP_Interior get 1924, 5 seconds for the convergence,
 BP_InteriorPC 3501, 3 seconds and
 BP_InteriorPC1 11587, 9 seconds.

Number of iterations of the program and the method of conjugate gradient.

	BP_Interior		BP_InteriorPC		BP_InteriorPC1	
Sinal	lt	ltCG	lt	ltCG	lt	ItCG
TwinSine-1	11	59	9	90	9	90
WernerSorrows	18	20883	11	10850	11	10520
Carbon	8	85	6	99	6	99
TwinSine-2	9	43	9	97	9	98
FM-Cosine	17	20098	12	17891	12	18026
Gong	21	11510	19	21681	23	71812
Dynamic-0	7	40	5	54	5	54
Dynamic-2	7	52	7	91	7	91
MultiGong	19	853	15	1097	17	1457

- When the number of iterations performed by BP_InteriorPC was not less than the number get by BP_Interior, this demonstrated to be equal.
- BP_InteriorPC1 got more iterations that BP_Interior only for the signal *Gong*, with a difference of only two iterations.

Tests

In relation to Conjugate Gradient Method, we note that the number of iterations increases constantly. This happens because:

- The initial solution is near the center of the feasible region, so in initial iteractions the system of equations is well conditioned and the method converges quickly.
- As $x^T z$ converges to 0, z/x converges to infinity or 0, thus the matrix $D = (X^{-1}Z + \gamma^2 I)$ e a matriz $(ADA^T + \delta^2 I)$ becomes ill-conditioned, and the method takes to converge.

Tests

Conclusions

- Obtain better perfomance with affine scaling direction , centering direction, and the correction direction of the Predictor-Corrector Method.
- Although BP_InteriorPC1 has obtained a very similar result to BP_InteriorPC, BP_InteriorPC achieved the best results, therefore the most efficient.
Futures Prospects

Futures Prospects

• In order to obtain better results, precondition the matrix of the linear system, to obtain a smaller number of iterations in Conjugate Gradient Method.

Futures Prospects

- In order to obtain better results, precondition the matrix of the linear system, to obtain a smaller number of iterations in Conjugate Gradient Method.
- Check the application of methods for larger dictionaries, considering if this is feasible in real applications.

Acknowledgement

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Thank you!