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Motivation

Given the signal x ∈ RN and a orthonormal bases {ψi}Ni=1, we can
express x as:

x =
N

∑
i=1

αiψi ou x = Ψα (1)

where αi = 〈x , ψi 〉.
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Motivation

Definition

(K-sparse Signal) The signal x is K − sparse, if it is linear
combination of K vectors of bases in (1).

Definition

(Compressible Signal) We say that x is compressible if the
representation (1) has just a few large coefficients and many small
coefficients.

Compressible signals are well approximated by K − sparse
representations
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Transform Coding

Get the signal x .

Solve α = ΨT x .

The K largest coefficients are located and the N − k smallest
coefficients are discarded.
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Inefficiencies

The initial number of samples may be large.

The set of all N transform coefficients must be computed
even though K of them will be discarded.

The locations of the large coefficients must be encoded, thus
introducing an overhead.
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Compressive Sensing

Directly acquiring a compressed signal representation without
going through the intermediate stage of acquiring N samples.

Compute M < N inner products between x and a collection of
vectors {φj}Mj=1, that is, sj = 〈x , φj 〉

We can write:

s = Φx = ΦΨα = Θα

where Θ = ΦΨ is an M ×N matrix.
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Compressive Sensing

The problem consists in:

Get a matrix Φ such that the salient information in any
K − sparse or compressible signal is not damaged by the
dimensionality reduction.

A reconstruction algorithm to recover x from only M
measurements s.
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Geometric Motivation

Consider the search for α signal having representation sparser and
respects the linear equation that restricts its position in R2 on the dotted
line.

v

b

β
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Basis Pursuit

Our goal is to apply Interior Point Methods to the problem:

minimize ‖α‖1
subject to Θα = s

(2)
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Purpose

On the PhD thesis of Chen, entitled Basis Pursuit, he seeks the
representation of signals using dictionaries.

In search of the sparse representation, applies Basis Pursuit.

To solve the problem Basis Pursuit, Chen implements the
Primal-Dual Logarithmic Barrier Method.

Our goal will be get more efficient results, implementing Interior
Point Methods to the problem in question.
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Signal Representation

Definition

(Dictionary) A dictionary is a collection of parameterized
waveforms D = (φγ : γ ∈ Γ), with waveforms φγ discrete-time
signals called atoms, which may also be viewed as a vector in Rn.

Dictionaries are defined as complets when they contain exactly n
atoms, overcomplete when contain more than n atoms, or
undercomplete when contain fewer than n atoms.

Dictionaries examples: stationary wavelets, wavelet packets, cosine
packets, chirples, warplets, Gabor dictionaries, wavelets and
steerable wavelets.
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Signal Representation

Let s be a discrete-time digital signal or a vector in Rn, we assume
a decomposition of the signal as

s = ∑
γ∈Γ

αγφγ. (3)

Consider that we have a discrete dictionary with p waveforms and
a Φ matrix whose columns correspond to p waveforms (Φ : n× p),
we can rewrite (3) as:

Φα = s, (4)

wherein α = (αγ) is the vector of coefficients in (3).
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Signal Representation

There are several methods proposed to represent signals with
overcomplete dictionaries. Some examples are:

Method of Frames.

Matching Pursuit.

The Best Orthogonal Basis,

Basis Pursuit.
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Signal Representation

Basis Pursuit

The principle of Basis Pursuit is to find a representation of the
signal whose coefficients have minimal norm 1. Formally, one
solves the problem:

minimize ‖α‖1
subject to Φα = s

(5)
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Basis Pursuit

Although the Basis Pursuit problem (5) involves nonlinear
optimization, it can be equivalently reformulated as a linear
program in the standard form:

minimize cT x
subject to Ax = b,

x ≥ 0.
(6)
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Basis Pursuit

Consider α as:

α = u − v , with u and v not negatives

and with ‖α‖1 upper bound of eTu + eT v , follows

Φα = Φ (u − v)
and

eTu + eT v = ‖α‖1
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Basis Pursuit

We obtain the following equivalent problem:

minimize eTu + eT v
subject to Φ (u − v) = s,

(u, v) ≥ 0,
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Basis Pursuit

Making the following transformations:

m⇔ 2p

x ⇔ (u; v)

c ⇔ (e; e)

A⇔ (Φ,−Φ)

b ⇔ s.

We obtain the linear problem in standard form.
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Formulation

We will use the formulation proposed by Gill, Murray and Saunders,
rewriting the problem as the following perturbed linear program:

minimize cT x + 1
2 ‖γx‖22 + 1

2 ‖p‖
2
2

subject to Ax + δp = b,
x ≥ 0,

(7)

where γ and δ are small
(
10−4

)
perturbation parameters;
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Logarithmic Barrier

One can associate the perturbed linear problem (7) with a
logarithmic barrier subproblem:

minimize cT x + 1
2 ‖γx‖22 + 1

2 ‖p‖
2
2 − µ

m

∑
i=1

ln (xi )

subject to Ax + δp = b.

where the constraint x ≥ 0 is implicit. As µ→ 0 the solution of the
logarithmic barrier problem converges to the solution of the perturbed
linear problem.
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First Order Necessary Conditions

Necessary first order conditions of the problem of minimizing the
Lagrangian function:

minimize cT x + 1
2 ‖γx‖22 + 1

2 ‖p‖
2
2 − µ

m

∑
i=1

ln (xi ) + yT (b− Ax − δp)

∇xL = AT y − γ2x − c + z = 0
∇pL = δy − p = 0⇒ p = δy
∇yL = Ax + δp − b = Ax + δ2y − b = 0
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First Order Necessary Conditions

And complementarity condition for the dual variable z we have:

ZXe − µe = 0
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Newton’s Method

The Newton search directions (∆x , ∆y , ∆z) satisfy:(
ADAT + δ2I

)
∆y = r − AD

(
X−1v − t

)
(8)

∆x = DAT ∆y + D
(
X−1v − t

)
(9)

∆z = X−1v − X−1Z ∆x (10)

where D =
(
X−1Z + γ2I

)−1
.



Motivation
Basis Pursuit

Primal-Dual Logarithmic Barrier Method Applied to BP
Implementation

Computational Tests

Newton’s Method

The Newton steplength (ρp, ρd ), should be chosen as large as
possible while still maintaining positive of x (k+1) and z (k+1).

Each barrier iteration consists of a Newton step adjustment
followed by a decrement in the barrier parameter µ. Decrease
µ monotonically and more rapidly if larger steps are taken:

µ← (1−min (ρp, ρd , 0, 99)) µ

The method converges when
∥∥b− Ax − δ2y

∥∥
2
,∥∥c + γ2x − z − AT y

∥∥
2

e zT x are small enough.
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BP Interior

The problem BP Interior, implemented by Chen and contained in
Atomizer, solves the problem Basis Pursuit using the same
procedure described above.

α⇐⇒ u − v

x ⇐⇒ (u; v)

c ⇐⇒ (e; e)

b ⇐⇒ s

A⇐⇒ (Φ,−Φ)

m⇐⇒ 2p
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Inicialization

Initializes by the solution from the Method of Frames (MOF),
i.e., by a α such Φα = s and ‖α‖2 is minimal.

µ0 = 0, 01
‖f ‖2√

2n

where f is the vector whose entries are given by the optimality
conditions: ∥∥b− Ax − δ2y

∥∥
2

,∥∥∥c + γ2x − z − AT y
∥∥∥
2

,

zT x .
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BP Interior

By Conjugate Gradient Methods determine the directions of
Newton’s Method.

Is projected dx = x − x0 in the null space of Φ by Conjugate
Gradient in order to ensure feasibility.
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Development of Proposed Methods

We are motivated by the aim of achieving simultaneously the goals:

Sparsity: We should obtain the sparsest possible
representation of the signal;

Superresolution: We should obtain a resolution of sparse
objects that has much higher resolution than that possible
with traditional non-adaptive approaches;

Stability: Small perturbations of signal should not seriously
degrade the results;

Speed.
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Development of Proposed Methods

Therefore, we modify the Primal-Dual Logarithmic Barrier Method,
in the program BP Interior, to obtain better efficiency. We apply
Predictor-Corrector Primal-Dual Logarithmic Barrier Method to
problem BP.



Motivation
Basis Pursuit

Primal-Dual Logarithmic Barrier Method Applied to BP
Implementation

Computational Tests

Predictor-Corrector Primal-Dual Logarithmic Barrier
Method

In this method applies Newton’s Method twice.
Aim to improve the performance of BP Interior, we introduced the
concept of three components:

Affine Scaling Direction, which corresponds to the step
predictor, find given direction when µ = 0.

Centering Direction, prevents the solutions are close to the
edges of the polytope defined by the constraints along the
iterations.

Nonlinear Correction Direction, calculate the non-linear
correction, trying to compensate the linear approximation of
Newton’s Method.
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Predictor-Corrector Primal-Dual Logarithmic Barrier
Method

Note that the nonlinear term in BP Interior, corresponds complementarity
condition, noting that we define v = µe − Zx in BP Interior.
The two steps, corresponding both times we apply Newton’s Method can
be summarized in:

In the first step we consider v such that v = −Zx ,

In the second step v = µe − Zx − ∆Z ∆Xe, where ∆z e ∆x were
obtained in the first step
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Variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method

We propose a variation of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method, where we did not perform the
replacement in the optimality conditions, so the expressions of the
first order conditions are:

F (x , y , z , p) =


AT y − γ2x − c + z

δy − p
Ax + δp − b

ZXe − µe

 = 0,

where z is a dual vector, X and Z are the diagonal matrices
formed by the elements of the vectors x and z , respectively.
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Variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method

The Newton search directions satisfy:(
ADAT + δ2I

)
∆y = r − AD

(
X−1w − t

)
+ δr ,

∆x = DAT ∆y + D
(
X−1v − t

)
,

∆z = X−1v − X−1Z ∆x ,

∆p = δ∆y − r ,

with D =
(
X−1Z + γ2I

)−1
.
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Variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method

Adding affine scaling direction , centering direction, and the
correction direction given by the Predictor-Corrector, let us
consider in the first step:

w = −Zx
and in the second step:

w = µ− Zx − ∆Z ∆Xe.
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Variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method

The method is initialized by the solution of Method of Frames

(MOF), so our starting p will be given by: p =
(b− Ax)

δ
.

To choose the step length (ρp, ρd ), we will do just as
determined to Predictor-Corrector Primal-Dual Logarithmic
Barrier Method, where we always choose the largest possible,
provided that the point x (k+1) and z (k+1) are interior points.
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Variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method

Every Newton step we grow barrier parameter µ
monotonically and faster if large steps are taken:

µ← (1−min (ρp, ρd , 0, 99)) µ.

The method converges when ‖b− Ax − δp‖2,∥∥c + γ2x − z − AT y
∥∥
2
, ‖p − δy‖2 e zT x are small enough

to achieve a numerical precision.
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The following are the results for signs:

TwinSine-1,

WernerSorrows,

Carbon,

TwinSine-2,

FM-Cosine,

Gong,

Dynamic-0,

Dynamic-2 and

MultiGong.
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For this representation we apply the BP Interior Method of Chen,
and our modifying methods of BP Interior:

Predictor-Corrector Primal-Dual Logarithmic Barrier Method -
BP InteriorPC,

and our variant of Predictor-Corrector Primal-Dual
Logarithmic Barrier Method - BP InteriorPC1.

The numerical experiments were implemented in Matlab R2010a,
operating system Ubuntu 11.04, processor Intel R© core i7 2600, 3.4
Ghz, 4 GB memory DDR3, RAM clock 1333Mhz.
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Problem Data

Signal Size of Dictionary par1 par2 par3
Problem

TwinSine-1 256 DCT 4 0 0

WernerSorrows 1024 CP 6 seno 0

Carbon 1024 WP 10 qmf 0

TwinSine-2 256 DCT 4 0 0

FM-Cosine 1024 CP 6 seno 0

Gong 1024 CP 10 seno 0

Dynamic-0 256 DCT and DIRAC MekeList(4,0) 0 0

Dynamic-2 256 DCT and DIRAC MekeList(4,0) 0 0

MultiGong 256 MDC 8 1 0
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Computational results for the objective function and
processing time

BP Interior
Signal OF Time

TwinSine-1 2,00933e+00 0,1
WernerSorrows 5,07482e+02 249,2
Carbon 6,00247e+00 19,8
TwinSine-2 2,01150e+00 0,1
FM-Cosine 2,52872e+02 237,3
Gong 4,73171e+00 1924,5
Dynamic-0 6,01964e+00 0,3
Dynamic-2 4,03672e+02 0,4
MultiGong 2,43810e+01 5,6

where OF corresponds to the value of the objective function.
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Computational results for the objective function and
processing time

BP InteriorPC BP InteriorPC1
Signal OF Time OF Time

TwinSine-1 2,00934e+00 0,1 2,00934e+00 0,1
WernerSorrows 5,07587e+02 130,0 5,07576e+02 124,1
Carbon 6,00003e+00 19,6 6,00003e+00 20,2
TwinSine-2 2,01108e+00 0,1 2,01108e+00 0,1
FM-Cosine 2,52885e+02 210,9 2,52896e+02 208,5
Gong 4,73088e+00 3501,3 4,72132e+00 11587,9
Dynamic-0 6,01902e+00 0,4 6,01907e+00 0,5
Dynamic-2 4,02187e+02 0,7 4,02187e+02 0,7
MultiGong 2,44009e+01 7,2 2,43895e+01 7,3

where OF corresponds to the value of the objective function.
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Tests

BP Interior, BP InteriorPC and BP InteriorPC1 have
equivalent computational performance relative to the value of
the objective function.
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The convergence time for BP Interior, BP InteriorPC and
BP InteriorPC1 were similar, with the most significant differences
obtained for:

The signal WernerSorrows, where
BP Interior get 249, 2 seconds for the convergence,
BP InteriorPC, 130, 0 seconds and
BP InteriorPC1, 124, 1 seconds;

and signal Gong, we get very different times for the three
methods,
BP Interior get 1924, 5 seconds for the convergence,
BP InteriorPC 3501, 3 seconds and
BP InteriorPC1 11587, 9 seconds.
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Number of iterations of the program and the
method of conjugate gradient.

BP Interior BP InteriorPC BP InteriorPC1
Sinal It ItCG It ItCG It ItCG

TwinSine-1 11 59 9 90 9 90
WernerSorrows 18 20883 11 10850 11 10520
Carbon 8 85 6 99 6 99
TwinSine-2 9 43 9 97 9 98
FM-Cosine 17 20098 12 17891 12 18026
Gong 21 11510 19 21681 23 71812
Dynamic-0 7 40 5 54 5 54
Dynamic-2 7 52 7 91 7 91
MultiGong 19 853 15 1097 17 1457
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Tests

When the number of iterations performed by BP InteriorPC
was not less than the number get by BP Interior, this
demonstrated to be equal.

BP InteriorPC1 got more iterations that BP Interior only for
the signal Gong, with a difference of only two iterations.
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In relation to Conjugate Gradient Method, we note that the
number of iterations increases constantly. This happens because:

The initial solution is near the center of the feasible region, so
in initial iteractions the system of equations is well
conditioned and the method converges quickly.

As xT z converges to 0, z/x converges to infinity or 0, thus
the matrix D =

(
X−1Z + γ2I

)
e a matriz

(
ADAT + δ2I

)
becomes ill-conditioned, and the method takes to converge.
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Conclusions

Obtain better perfomance with affine scaling direction ,
centering direction, and the correction direction of the
Predictor-Corrector Method.

Although BP InteriorPC1 has obtained a very similar result to
BP InteriorPC, BP InteriorPC achieved the best results,
therefore the most efficient.
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Futures Prospects

In order to obtain better results, precondition the matrix of
the linear system, to obtain a smaller number of iterations in
Conjugate Gradient Method.

Check the application of methods for larger dictionaries,
considering if this is feasible in real applications.
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